Davis Advanced RF Technologies Lab

Home | People-Openings | Teaching | Research-Publications | UAV Lab | Outreach | Facilities | Resources | Blog |

News

» [10 Apr 2019] » Dr. Xiaomeng Gao receives the Best Young Professional Paper Award at WAMICON2019
» [01 Feb 2019] » DART Lab to Advance to Phase 3 of the DARPA SPAR Program
» [23 May 2018] » Songjie Defended his PhD Degree
» [20 Jan 2018] » DART Lab to Advance to Phase 2 of the DARPA SPAR Program
» [07 Mar 2017] » DART Lab Awarded NSF STTR Phase II Project on Developing a Radar-based Wearable Heart Health Monitoring Device
» [08 Nov 2016] » DART Lab to Participate in DARPA SPAR program

email | GitHub

The scaling of semiconductor, especially complementary metal-oxide-semiconductor (CMOS) technologies and massive parallelism of processors have continued to push our computing capabilities to meet today’s data processing demand. However, the rate at which we can move large amounts of data between processors is increasingly becoming a bottleneck for achieving higher computational power. To tackle this challenge, we are investigating high-speed chip-to-chip interconnects solutions using carrier frequencies in the range of 100 GHz - 1 THz. The large amount of bandwidth available at this frequency range makes it an ideal solution for high speed data communication. An enabling technology of this effort is the use of micromachined dielectric waveguide as the interconnect medium, resulting in a significant reduction in link loss. This project in collaboration with Prof. Jane Q. Gu.