App Note: On-Board Processing
EEC 134AB

Jiapeng Zhong (Team Leidar)

Introduction:

e This app note covers the on-board processing part using a Tl micro-controller unit (MCU)
cc3200: including sampling, on-board FFT. Some functions are provided by Tl through
Code Composer Studio, such as pin mux, pin writing API, interrupts, etc. The OLED
drawing part is provided by Adafruit, and the basic version of Cooley-Tukey FFT algorithm
is from online resource. We wrote the SPI communication part of OLED, and improved
space and latency for the FFT.

OLED SPI communication:

writeCommand()

void writeCommand(unsigned char c) {
unsigned long ulDummy;

MAP_SPICSEnable(GSPI_BASE);

//DC Low to indicate command, then enable MCU communication
GPIOPinWrite (GPIOAO_BASE, 0x40, 0x00);

GPIOPinWrite (GPIOA©_BASE, 0x80, 0x00);

//Imitate spiwrite
MAP_SPIDataPut(GSPI_BASE,c);
MAP_SPIDataGet(GSPI_BASE,&ulDummy);

//Disable MCU communication

GPIOPinWrite (GPIOA®_BASE, 0x80, 0x80);
MAP_SPICSDisable(GSPI_BASE);

e This function follows the SPI protocol to pull the target pin low and then write the data
and re-pull the target high. Enable the GSPI_BASE at beginning and Disable GSPI_BASE
at the end for protection.

FFT

//***

//******** ImpLementS -L—he COOLey—TUkey FFT a(_gor‘-ithm 3k 3k >k >k ok 3k sk >k >k ok sk sk 3k >k ok sk sk sk >k ok ok ok sk >k kok
/% %K ok ok ok sk ke ok sk ok ok ok sk ok ok sk sk o sk sk o ok sk ok ks ok ok ok sk ok ok ok sk o ok sk ok o sk sk o ok sk o ks o ok ok sk ok o ok sk o ke sk ok o ok sk ok o ok s ok o ok
static
void FFT_CooleyTukey(int N, int N1, int N2) {
int k1, k2;
int k, n;
/* Allocate column-wise matrix */
signed long long** columns_real = (signed long long**)
malloc(sizeof(signed long long*) * N1);
for(kl = 0; k1 < N1; k1l++) {
columns_real[kl] = (signed long long*)
malloc(sizeof(signed long long) * N2);

/* Reshape input into N1 columns */
for (k1 = ©; k1 < N1; kil++) {
for(k2 = 0; k2 < N2; k2++) {
columns_real[k1l][k2] = (signed long long) sample[N1*k2 + k1];

complex** columns = (complex**) malloc(sizeof(struct complex_t*) * N1);
for(kl = 0; k1 < N1; k1++) {
columns[kl] = (complex*) malloc(sizeof(struct complex_t) * N2);

JRFFERFFFAAAAAAK Compute N1 DFTs of Length N2 using naive method **¥¥idiiiiixxxx/
for (k1 = ©; k1 < N1; kil++) {
//columns[R1] = DFT_naive(columns[R1], N2);
for(k = 9; k < N2; k++) {
columns[k1][k].re = 0;
columns[k1][k].im = ©;
for(n = 0; n < N2; n++) {
columns[kl][k].re = columns[kl][k].re +
columns_real[k1][n] * cos_Naive[k][n];
columns[k1][k].im = columns[k1][k].im +
columns_real[k1l][n] * sin_Naive[k][n];

free(columns_real[kl]);

}

free(columns_real);

JRRFRER KKK KKK KRKA [0Cate rOW-WiSe MATrix *HFExkskkskkskokskokskokskoksdkoksdonsdkonskkokkkkokk /

complex ** rows = (complex**) malloc(sizeof(struct complex_t*) * N2);
for(k2 = 0; k2 < N2; k2++) {
rows[k2] = (complex*) malloc(sizeof(struct complex_t) * N1);

/*¥** Multiply by the twiddle factors (e”(-2*pi*j/N * k1*R2)) and transpose ***/
for(kl = 0; k1 < N1; ki++) {
for (k2 = 9; k2 < N2; k2++) {
rows[k2][k1].re = (columns[k1l][k2].re*cos_twiddle[k1][k2] -
columns[k1][k2].im*sin_twiddle[k1][k2]) >> 14;
rows[k2][k1].im = (columns[k1][k2].re*sin_twiddle[k1][k2] +
columns[k1][k2].im*cos_twiddle[k1][k2]) >> 14;

}
free(columns[k1]);

}

free(columns);

complex* X row = (complex*) malloc(sizeof(struct complex_t) * N1);
JRRRRRRRRK KRR XX Compute N2 DFTs of Length N1 using naive method ******xkxxxxxxx/
for (k2 = 9; k2 < N2; k2++) {
//rows[kR2] = DFT naive(rows[R2], N1);
for(k = 0; k < N1; k++) {
X_row[k].re = 0.0;
X_row[k].im = 90.0;
for(n = ©; n < N1; n++) {
X_row[k].re = X_row[k].re + ((rows[k2][n].re*cos_Naive[k][n] -
rows[k2][n].im*sin_Naive[k][n]) >> 14);
X_row[k].im = X_row[k].im + ((rows[k2][n].im*cos_Naive[k][n] +
rows[k2][n].re*sin_Naive[k][n]) >> 14);
}
}

for(n = 0; n < N1; n++) rows[k2][n] = X_row[n];

}

free(X_row);

/*********************** FLatte” i”to SingLe OUtpUt ***************************/

for(kl = 0; k1 < N1; kl++) {
for (k2 = 9; k2 < N2; k2++) {
result[N2*kl + k2] = mag(rows[k2][k1]);

}
¥

for(k2 = 0; k2 < N2; k2++) free(rows[k2]);
free(rows);

return;

The original code was from https://github.com/jtfell/c-fft.git. The original version used 2 double
to represent the real and imaginary part of a complex number, and the sin/cos result was
generated from the sin/cos function from <math.h>

To speed up the processing, we changed the type from double to signed long long with with
14 bits after decimal point (~0.00006). Each signed long long data type is 8 Bytes (64 bits) at
least; for one FFT computation, we need to keep at least 3 arrays simultaneously even if we
free the intermediate arrays. The micro-controller cc3200 has 256 kB RAM on the processor,
thus, after considering the data storage and code storage, we decide to using a sample space
with size of 1024 samples. This require 8 * 1024 = 8 kB from stack for each FFT. We also
changed the way to obtain sin/cos result to using two set of tables to store the naive
sin/cos result and the twiddled sin/cos result, since we know we are using 1024 samples to
perform the FFT.

Finding Frequency

https://github.com/jtfell/c-fft.git

max_val = result[1];
max_index = 1;
for (i=70;i<730;i++){
if (result[i] > max_val){
max_index = 1i;
max_val = result[i];
}

}
freq = max_index * 3125 / 1024;

After performing FFT, we get 1024 indices evenly distributed in the 0 - 21t range. We have a
sample frequency of 3125 Hz (scaled using counter, maximum sample frequency is 62500 Hz).
Our triangle has a frequency of 33.33 Hz, thus the maximum frequency we are expecting for

50m is
2 x 50m 1

X
3 x108m/s 15ms
Thus, we are expecting a minimum frequency of 220.67 Hz.
In order to find the frequency with max power from 220.67 Hz (around index 72.3) to 220.67

x 3V x 33.1MHz/V = 2206.6667

maximum frequency =

Hz (around index 723), we only looking for the max_index from 70 to 730

from the frequency, we can find the distance by using:

. AfxexT
Range = 4X AV X sensitivity

